تكامل بالتعويض
قالب:تفاضل تكامل التكامل بالتعويض أو التكامل بتغيير المتغير
- تحويل قالب:إنكليزية أحد الطرق المستعملة في علم التفاضل والتكامل لحساب الاشتقاق العكسي.
لتكن الفترة خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle I \subseteq {\mathbb{R}}} وخطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle g : [a,b] \to I\,} دالة قابلة للتفاضل. ولنفرض أن خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : I \to \mathbb{R}} . حينئذ
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(g(t))g'(t)\, dt = \int_{g(a)}^{g(b)} f(x)\,dx. }
باستخدام التعويض خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = g(t)\,} ينتج خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx/dt = g'(t)\,} وبالتالي خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx = g'(t)\,dt} , وهو التعويض المطلوب لـخطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx\,} .
تستخدم هذه الصيغة لنقل التكامل إلى شكل اخر بحيث يكون سهل الحساب ويمكن ان تستخدم من اليمين لليسار والعكس.
علاقته بالنظرية الأساسية للتكامل
يمكن اشتقاق التكامل بالتعويض من النظرية الأساسية للتكامل. لتكن ƒ وg دالتين تحققان الفرض السابق hypothesis that ƒ متصلة على الفترة I وخطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'\,} متصلة على الفترة المغلقة [a,b]. وبالتالي تكون الدالة خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(g(t))g'(t)} متصلة أيضا على [a,b]. وعليه فإن التكاملات
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{g(a)}^{g(b)} f(x)\,dx }
و
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(g(t))g'(t)\,dt }
موجودان بالفعل, وبقي أن نثبت أنهما متساويان.
بما أن ƒ متصلة, فإن لها مشتق عكسي F. الدالة خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle F\circ g} بالتالي تكون معرفة. بما أن F وg are قابلتان للتفاضل, تعطينا قاعدة السلسلة
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F \circ g)'(t) = F'(g(t))g'(t) = f(g(t))g'(t). }
وبتطبيق النظرية الاساسية للتكامل مرتين تحصل على
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_a^b f(g(t))g'(t)\,dt & {} = (F \circ g)(b) - (F \circ g)(a) \\ & {} = F(g(b)) - F(g(a)) \\ & {} = \int_{g(a)}^{g(b)} f(x)\,dx, \end{align} }
وهي قاعدة التعويض.
أمثلة
لنعتبر التكامل
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^2 x \cos(x^2+1) \,dx }
باستخدام التعويض u = x2 + 1, نحصل على du = 2x dx و
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{x=0}^{x=2} x \cos(x^2+1) \,dx & {} = \frac{1}{2} \int_{u=1}^{u=5}\cos(u)\,du \\ & {} = \frac{1}{2}(\sin(5)-\sin(1)). \end{align} }
تم التعويض هنا من اليمين لليسار. من المهم التنويه أنه لما كانت النهاية الأسفل x = 0 تم ابدالها بـ u = 02 + 1 = 1, والنهاية الأعلى x = 2 ابدلت بـ u = 22 + 1 = 5, وبإعادة التعويض إلى اصله x لم يكن ضروريا.
لإبجاد التكامل
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \sqrt{1-x^2}\; dx }
يتوجب استعمال الصيغة من اليسار إلى اليمين: التعويض x = sin(u), dx = cos(u) du مفيد لأن خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{1-\sin^2(u)}=cos(u)} :
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \sqrt{1-x^2}\; dx = \int_0^\frac{\pi}{2} \sqrt{1-\sin^2(u)} \cos(u)\;du = \int_0^\frac{\pi}{2} \cos^2(u)\;du }
التكامل الناتج يمكن حسابه بواسطة التكامل بالتجزئة أو صيغة مضاعفات الزاوية متبوعة بتعويض مناسب أو أكثر.
لاحظ أيضا أن التكامل السابق ماهو إلا حساب لمساحة ربع الدائرة والذي كان بالإمكان إيجادة بقسمة مساحة الدائرة على 4 (و باعتبار نصف قطرها= 1 يصبح الناتج باي\4).
الاشتقاقات العكسية
يمكن ايجاد المشتق العكسي بواسطة التكامل بالتعويض وذلك بدراسة العلاقة بين x وu, dx وdu وبالمفاضلة والتعويض.
يمكن استخدام الطريقة التالية لحل المثال السابق:
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} & {} \quad \int x \cos(x^2+1) \,dx = \frac{1}{2} \int 2x \cos(x^2+1) \,dx \\ & {} = \frac{1}{2} \int\cos u\,du = \frac{1}{2}\sin u + C = \frac{1}{2}\sin(x^2+1) + C \end{align} }
حيث C ثابت اختياري ثابت التكامل.
تعويض المتغيرات المتعددة
يمكن استخدام التعويض مع الدوال ذات المتغيرات المتعددة. هنا التعويض (v1,...,vn) = φ(u1, ..., un ) متداخلة وقابلة للتفاضل باستمرار, وتحويل التفاضلات
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv_1\cdots dv_n = |\det(\operatorname{D}\varphi)(u_1, \ldots, u_n)| \, du_1\cdots du_n}
حيث det(Dφ)(u1, ..., un ) يرمز إلى محدد مصفوفة جاكوبي محتويا على التفاضلات الجزئيةلـ φ . تعبر هذه الصيغة عن الحقيقة القائلة أن القيمة المطلقةلمحدد متجهات معطاة يساوي حجم متوازي السطوحالممدود.
وبتعبير أدق, تغيير صيغة المتغيرات تنص علية النظرية التالية:
نظرية. لتكن U, V مجموعات مفتوحة في Rn and φ : U → V an متداخلة دالة قابلة للتفاضل ولها مشتقات جزئية مستمرة, الجاكوبيان الذي لايحوي صفر لكلx في U. حينئذ لأي قيمة حقيقية, تدعم دمج تابع مستمر f, مع دعم مرتبط في φ(U),
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\varphi(U)} f(\mathbf{v})\, d \mathbf{v} = \int_U f(\varphi(\mathbf{u})) \left|\det(\operatorname{D}\varphi)(\mathbf{u})\right| \,d \mathbf{u}.}
يمكن اضعاف شروط النظرية بعدة طرق. أولا شرط استمرارية اشتقاق φ يمكن ابداله بالافتراض الاضعف φ تكون قابلة للاشتقاق فقط ولها انعكاس مستمر هذا مضمون إذا كانت φ قابلة للاشتقاق باستمرار نظرية دالة المعكوس. بالمثل, الشرط Det(Dφ)≠0 يمكن عزله بتطبيق نظرية سارد. الكثير من الاصدارات العامة لهذه النتيجة لا زالت.
تطبيقات في الاحتمالات
يمكن استخدام التعويض للاجابة على السؤال المهم في الاحتمالات: إذا علم أن متغير عشوائي خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} له كثافة احتمالية خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_x\,} ومتغير عشوائي اخر خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y\,} له صلة بـ خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\,} بالمعادلة خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\Phi(x)\,} , فماهي كثافة الاحتمالية خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y\,} ?
من السهولة بمكان الاجابة على السؤال السابق بالاجابة أولا بشكل طفيف على سؤال اخر: ماهو احتمال ان تأخذ خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y\,} قيمة في مجموعة فرعية معينة خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\,} ? لنرمز لهذه الاحتمالية بـ خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(Y \in S)\,} . بالطلع, إذا كانت خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y\,} لها كثافة احتماليةخطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_y\,} فستصبح الاجابة
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(Y \in S) = \int_S p_y(y)\,dy, }
ولكن هذا لا يفيد لاننا لا نعلم py; فهي ما نبحث عنه من الوهلة الأولى. يمكننا التقدم خطوة بالنظر للمسألة في المتغير خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\,} . خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y\,} تأخذ قيمة في S كلما أخذت X قيمة في خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi^{-1}(S)\,} , وعليه
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(Y \in S) = \int_{\Phi^{-1}(S)} p_x(x)\,dx. }
وبالتغيير من x إلى y نحصل على
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(Y \in S) = \int_{\Phi^{-1}(S)} p_x(x)~dx = \int_S p_x(\Phi^{-1}(y)) ~ \left|\frac{d\Phi^{-1}}{dy}\right|~dy. }
وبدمج هذه مع المعادلة الأولى تصبح
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_S p_y(y)~dy = \int_S p_x(\Phi^{-1}(y)) ~ \left|\frac{d\Phi^{-1}}{dy}\right|~dy }
وبالتالي
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_y(y) = p_x(\Phi^{-1}(y)) ~ \left|\frac{d\Phi^{-1}}{dy}\right|. }
في الحالة التي يكون خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\,} وخطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y\,} معتمدا على متغيرات غير مترابطة, أي خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_x=p_x(x_1\ldots x_n)\,} , وخطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\Phi(x)\,} , خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_y\,} يمكن ايجادها بالتعويض في متغيرات متعددة سبق نقاشها. وتكون النتيجة
- خطأ رياضيات (SVG مع PNG احتياطي (يمكن تمكين MathML عبر المكوِّن الإضافي للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_y(y) = p_x(\Phi^{-1}(y)) ~ \left|\det \left[ D\Phi ^{-1}(y) \right] \right|. }
انظر أيضا
المراجع
- ترجمة من الموقع الإنكليزي
ca:Integració per canvi de variable cs:Substituční metoda (integrování) de:Integration durch Substitution en:Integration by substitution es:Métodos de integración#Método de integración por sustitución fr:Intégration par changement de variable he:אינטגרציה באמצעות החלפת משתנים it:Integrazione per sostituzione km:អាំងតេក្រាលប្តូរអថេរ ko:치환적분 nl:Integratie door substitutie pl:Całkowanie przez podstawienie vi:Phép đổi biến tích phân zh:换元积分法